Objective

Automated Game Theoretic algorithm for detecting and preventing attack (injection of malicious packages) against a Wireless Sensors Network (WSN). In this way, Network Operators (Defender) follow the defending strategy that minimizes the impact of an attack by an Attacker.

Model Analysis

3.1. Intrusion Detection Model

This model determines the best strategy (i.e., optimal number of sensors and optimal tolerance) that the defender could choose in order to better protect the network.

- Decided by Attacker
- Decided by Defender
- Predetermined (reflect credibility of every sensor)
- Nash Equilibrium of matrix will be found

3.2. Intrusion Prevention Model

Best strategy for the defender is found (i.e., optimal number of sensors and sensor recoveries).

- Decided by Attacker
- Decided by Defender
- Nash Equilibrium of that matrices will be found

Results

Intrusion Detection Model

<table>
<thead>
<tr>
<th>Significance Coefficients</th>
<th>Optimal # of Sensors</th>
<th>Optimal Tolerance</th>
<th>Optimal # of Attacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>All equal to 1</td>
<td>511</td>
<td>0.8</td>
<td>400</td>
</tr>
<tr>
<td>Uniform (1,4)</td>
<td>503</td>
<td>0.85</td>
<td>400</td>
</tr>
<tr>
<td>Normal (2.5, 0.25)</td>
<td>500</td>
<td>0.85</td>
<td>400</td>
</tr>
</tbody>
</table>

Intrusion Protection Model

<table>
<thead>
<tr>
<th>Non-Iterated / Iterated</th>
<th>Optimal # of Sensors</th>
<th>Optimal # of Recoveries</th>
<th>Optimal Attacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Iterated</td>
<td>200</td>
<td>1</td>
<td>Expon.(mean: 92.5)</td>
</tr>
<tr>
<td>Iterated</td>
<td>200</td>
<td>1</td>
<td>Poisson(mean: 65)</td>
</tr>
</tbody>
</table>

At the iterated IPM, the number of rounds is determinant

Further Work

- Forecasting
- Investigate model's applicability in networks of varying densities and its scalability with increasing network size

Similar methods can be applied to Military Systems, Battlespace, Environmental or Infrastructure Monitoring etc.

Sensomax

Sensomax and the simulations run with it are made by Mo Haghigi (Mo.Haghigi@bristol.ac.uk)

Sensomax is an agent-based WSN middleware, which supports concurrent execution in multiple applications, integrates different mechanisms for different operational paradigms, and facilitates application developers with a component-based architecture for seamless development process.

References
